EKF v.s. ESKF or Direct v.s. Indirect KF

本文最后更新于:May 7, 2023 pm

[TOC]

Overview

EKF and ESKF:

  • EKF: Extended Kalman Filter --> Direct Kalman Filter
  • ESKF: Error State Kalman Filter --> Indirect Kalman Filter

Estimator State Types:

  • True State
  • Nominal State
  • Error State

ESKF Advantages:

  • The orientation error-state is minimal (i.e., it has the same number of parameters as degrees of freedom), avoiding issues related to over-parametrization (or redundancy) and the consequent risk of singularity of the involved covariances matrices, resulting typically from enforcing constraints.

  • The error-state system is always operating close to the origin, and therefore far from possible parameter singularities, gimbal lock issues, or the like, providing a guarantee that the linearization validity holds at all times.

  • The error-state is always small, meaning that all second-order products are negligible. This makes the computation of Jacobians very easy and fast. Some Jacobians may even be constant or equal to available state magnitudes.

  • The error dynamics are slow because all the large-signal dynamics have been integrated in the nominal-state. This means that we can apply KF corrections (which are the only means to observe the errors) at a lower rate than the predictions.

EKF

Generic Problem Formulation

Consider a nonlinear, bounded, observable system with continuous process dynamics and discrete measurement as

\[ \begin{aligned} \dot{\mathbf{x}}(t) &=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))+\Gamma \mathbf{w}(t) , \quad \mathbf{w} \sim \mathcal{N}(0, Q) \\ \mathbf{z}_{k} &=\mathbf{h}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k} , \quad \mathbf{v}_{k} \sim \mathcal{N}\left(0, R_{k}\right) \end{aligned} \]

and

\[ \mathbf{x}(0)=\mathbf{x}_{0} \]

The process and measurement noise are assumed to be zero mean, band-limited, uncorrelated, white multivariate Gaussian processes given by

\[ \begin{aligned} E\left[\mathbf{w}(t) \mathbf{w}^{T}(\tau)\right] &=Q \delta(t-\tau)=\left\{\begin{array}{lr} Q, & t=\tau \\ 0, & t \neq \tau \end{array}\right.\\ E\left[\mathbf{v}_{k} \mathbf{v}_{j}^{T}\right] &=R_{k} \delta_{k j}=\left\{\begin{array}{ll} R_{k}, & k=j \\ 0, & k \neq j \end{array}\right. \end{aligned} \]

  • \(Q\): continuous process noise covariance matrix
  • \(R\): discrete measurement noise covariance matrix

Prediction

\[ \begin{aligned} \dot{\hat{\mathbf{x}}}(t) &=\mathbf{f}(\hat{\mathbf{x}}(t), \mathbf{u}(t)) \\ \dot{P}(t) &=F(t) P(t)+P(t) F^{T}(t)+\Gamma Q \Gamma^{T} \\ F(t) &=\left.\frac{\partial \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))}{\partial \mathbf{x}(t)}\right|_{\mathbf{x}(t)=\hat{\mathbf{x}}(t), \mathbf{u}(t)} \end{aligned} \]

  • \(P\): state error covariance matrix

EKF Transition to Update Stage:

\[ \begin{aligned} \hat{\mathbf{x}}_{k}^{-} &=\hat{\mathbf{x}}(k \Delta t)+\dot{\hat{\mathbf{x}}}(t) \cdot \Delta t \\ P_{k}^{-} &=P(k \Delta t)+\dot{P}(t) \cdot \Delta t \end{aligned} \]

Update

measurement process

\[ \hat{\mathbf{z}}_{k}^{-}=\mathbf{h}\left(\hat{\mathbf{x}}_{k}^{-}\right) \]

kalman gain

\[ K_{k} =P_{k}^{-} H_{k}^{T}\left(H_{k} P_{k}^{-} H_{k}^{T}+R_{k}\right)^{-1} \]

where (w.r.t true-state)

\[ \color{blue}{H_{k} =\left.\frac{\partial \mathbf{h}\left(\mathbf{x}_{k}\right)}{\partial \mathbf{x}_{k}}\right|_{\mathbf{x}_{k}=\hat{\mathbf{x}}_{k}^{-}}} \]

finally

\[ \begin{aligned} \hat{\mathbf{x}}_{k} &=\hat{\mathbf{x}}_{k}^{-}+K_{k}\left(\mathbf{z}_{k}-\hat{\mathbf{z}}_{k}^{-}\right) \\ P_{k} &=\left(I-K_{k} H_{k}\right) P_{k}^{-} \end{aligned} \]

ESKF

consider the following simplified nonlinear process model:

\[ \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t)) \]

Applying a small perturbation δx (t) around x (t) yields

\[ \dot{\mathbf{x}}(t)+\delta \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t)+\delta \mathbf{x}(t)) =\mathbf{f}(\mathbf{x}(t))+\nabla \mathbf{f}(\mathbf{x}(t)) \delta \mathbf{x}(t)+\mathcal{O}(t, \mathbf{x}(t), \delta \mathbf{x}(t)) \]

Prediction

linear time varying system with δx as the state vector as

\[ \delta \dot{\mathbf{x}}(t)=F(t) \delta \mathbf{x}(t)+\Gamma \mathbf{w}(t) \]

the error-state process model is linear !!!

and

\[ \delta \mathbf{x}_{k}=\Phi_{k-1} \delta \mathbf{x}_{k-1}+\tilde{\mathbf{w}}_{k-1} , \quad \tilde{\mathbf{w}}_{k-1}=\int_{0}^{\Delta t} \Phi(t, 0) \Gamma \mathbf{w}(t) d t \]

where \(\tilde{\mathbf{w}}\) is the discretized process noise and \(\Phi_{k-1}\) is the state transition matrix.

the error state covariance matrix is propagated using

\[ P_{k}^{-}=\Phi_{k-1} P_{k-1} \Phi_{k-1}^{T}+Q_{k-1} \]

where \(Q_{k-1}\) is the discrete time equivalent process noise covariance matrix and is given by

\[ Q_{k-1}=\int_{0}^{\Delta t} \Phi(t, 0) \Gamma Q \Gamma^{T} \Phi^{T}(t, 0) d t \]

where, \(\Phi(t, 0)=e^{F(t) t}\) is the continuous time state transition matrix and \(Q\) is the continuous time process noise covariance matrix.

Update

The measurement model is assumed to be in direct discrete time

\[ \mathbf{z}_{k}=\mathbf{h}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k} \]

kalman gain

\[ \begin{aligned} S_{k} &=R_{k}+H_{k} P_{k}^{-} H_{k}^{T} \\ K_{k} &=P_{k}^{-} H_{k}^{T} S_{k}^{-1} \end{aligned} \]

where (w.r.t error-state)

\[ \color{blue}{ \mathbf{H} \left.\triangleq \frac{\partial h}{\partial \delta \mathbf{x}}\right|_{\mathbf{x}}} \]

finally

\[ \begin{aligned} \mathcal{I}_{k} &= \mathbf{z}_{k}-\mathbf{h}\left(\hat{\mathbf{x}}_{k}^{-}\right) \\ \delta \hat{\mathbf{x}}_{k} &=K_{k} \mathcal{I}_{k} \end{aligned} \]

\[ P_{k}=\left(I-K_{k} H_{k}\right) P_{k}^{-} \]

true-state estimate

\[ \hat{\mathbf{x}}_{k} =\hat{\mathbf{x}}_{k}^{-}+\delta \hat{\mathbf{x}}_{k} \]

Appendix

Kalman Filter Diagrams

Reference

  • [1] Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation

  • [2] Quaternion kinematics for the error-state Kalman filter


EKF v.s. ESKF or Direct v.s. Indirect KF
https://cgabc.xyz/posts/fbbd7d77/
Author
Gavin Gao
Posted on
December 30, 2020
Licensed under