On-Manifold Optimization: Local Parameterization

Last updated on May 7, 2023 pm

Overview

Manifold Space vs Tangent Space

Jacobian w.r.t Error State

Jacobian w.r.t Error State vs True State

According [1] 2.4,

The idea is that for a \(x \in N\) the function \(g(\delta) := f (x \boxplus \delta)\) behaves locally in \(0\) like \(f\) does in \(x\). In particular \(\|f(x)\|^2\) has a minimum in \(x\) if and only if \(\|g(\delta)\|^2\) has a minimum in \(0\). Therefore finding a local optimum of \(g\), \(\delta = \arg \min_{\delta} \|g(\delta)\|^2\) implies \(x \boxplus \delta = \arg \min_{\xi} \|f(\xi)\|^2\).

\[ f(x \boxplus \delta)=f(x)+J_x \delta+\mathcal{O}\left(\|\delta\|^2\right) \]

where

\[ J = \left. \frac{\partial f(x \boxplus \delta)}{\partial \delta} \right|_{\delta=0} \quad \longleftrightarrow \quad J = \left. \frac{\partial f(x)}{\partial x} \right|_{x} \]

ESKF [2] 6.1.1: Jacobian computation

\[ \left.\mathbf{H} \triangleq \frac{\partial h}{\partial \delta \mathbf{x}}\right|_{\mathbf{x}}=\left.\left.\frac{\partial h}{\partial \mathbf{x}_t}\right|_{\mathbf{x}} \frac{\partial \mathbf{x}_t}{\partial \delta \mathbf{x}}\right|_{\mathbf{x}}=\mathbf{H}_{\mathbf{x}} \mathbf{X}_{\delta \mathbf{x}} \]

  • \(x_t\): true state
  • \(x\): normal state
  • \(\delta x\): error state

lifting and retraction:

\[ \left.\mathbf{X}_{\delta \mathbf{x}} \triangleq \frac{\partial \mathbf{x}_t}{\partial \delta \mathbf{x}}\right|_{\mathbf{x}}=\left[\begin{array}{ccc} \mathbf{I}_6 & 0 & 0 \\ 0 & \mathbf{Q}_{\delta \boldsymbol{\theta}} & 0 \\ 0 & 0 & \mathbf{I}_9 \end{array}\right] \]

the quaternion term

\[ \begin{aligned} \left.\mathbf{Q}_{\delta \boldsymbol{\theta}} \triangleq \frac{\partial(\mathbf{q} \otimes \delta \mathbf{q})}{\partial \delta \boldsymbol{\theta}}\right|_{\mathbf{q}} &=\left.\left.\frac{\partial(\mathbf{q} \otimes \delta \mathbf{q})}{\partial \delta \mathbf{q}}\right|_{\mathbf{q}} \frac{\partial \delta \mathbf{q}}{\partial \delta \boldsymbol{\theta}}\right|_{\delta \hat{\boldsymbol{\theta}}=0} \\ &=\left.\left.\frac{\partial\left([\mathbf{q}]_L \delta \mathbf{q}\right)}{\partial \delta \mathbf{q}}\right|_{\mathbf{q}} \frac{\partial\left[\begin{array}{c} 1 \\ \frac{1}{2} \delta \boldsymbol{\theta} \end{array}\right]}{\partial \delta \boldsymbol{\theta}}\right|_{\hat{\delta}=0} \\ &=[\mathbf{q}]_L \frac{1}{2}\left[\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned} \]

Least Squares on a Manifold [3]

Local Parameterization in Ceres Solver [4] [5] [6] [7] [8]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class LocalParameterization {
public:
virtual ~LocalParameterization() = default;
virtual bool Plus(const double* x,
const double* delta,
double* x_plus_delta) const = 0;
virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
virtual bool MultiplyByJacobian(const double* x,
const int num_rows,
const double* global_matrix,
double* local_matrix) const;
virtual int GlobalSize() const = 0;
virtual int LocalSize() const = 0;
};

Plus

Retraction

\[ \boxplus(x, \Delta)=x \operatorname{Exp}(\Delta) \]

ComputeJacobian

global w.r.t local

\[ J_{GL} = \frac{\partial x_G}{\partial x_L} = D_2 \boxplus(x, 0) = \left. \frac{\partial \boxplus(x, \Delta)}{\partial \Delta} \right|_{\Delta = 0} \]

参考 [9]

\(r\) w.r.t \(x_{L}\)

ceres::CostFunction 处提供 residuals 对 Manifold 上变量的导数

\[ J_{rG} = \frac{\partial r}{\partial x_G} \]

则 对 Tangent Space 上变量的导数

\[ J_{rL} = \frac{\partial r}{\partial x_L} = \frac{\partial r}{\partial x_G} \cdot J_{GL} \]

Sub Class

  • QuaternionParameterization
  • EigenQuaternionParameterization

自定义 QuaternionParameterization

参考 [7]

Summary

  • QuaternionParameterization 的 Plus 与 ComputeJacobian 共同决定使用左扰动或使用右扰动形式

Quaternion in Eigen

1
2
3
4
5

Quaterniond q1(1, 2, 3, 4); // wxyz
Quaterniond q2(Vector4d(1, 2, 3, 4)); // xyzw
Quaterniond q3(tmp_q); // xyzw, double tmp_q[4];
q.coeffs(); // xyzw

Quaternion in Ceres Solver

  • order: wxyz
  • Ceres Solver 中 Quaternion 是 Hamilton Quaternion,遵循 Hamilton 乘法法则
  • 矩阵 raw memory 存储方式是 Row Major

Reference

  1. A Framework for Sparse, Non-Linear Least Squares Problems on Manifolds
  2. Quaternion kinematics for the error-state Kalman filter, Joan Solà
  3. A Tutorial on Graph-Based SLAM
  4. http://ceres-solver.org/nnls_modeling.html#localparameterization
  5. On-Manifold Optimization Demo using Ceres Solver
  6. Matrix Manifold Local Parameterizations for Ceres Solver
  7. [ceres-solver] From QuaternionParameterization to LocalParameterization 😄
  8. LocalParameterization子类说明:QuaternionParameterization类和EigenQuaternionParameterization类
  9. 优化库——ceres(二)深入探索ceres::Problem

On-Manifold Optimization: Local Parameterization
https://cgabc.xyz/posts/cfb7b6d6/
Author
Gavin Gao
Posted on
September 4, 2022
Licensed under