Multi-Sensor Fusion: LiDAR and Radar fusion based on EKF

Last updated on November 26, 2023 pm

[TOC]

Overview

System State Vector

State Transition & Measurement Function

State transition function:

Measurement function:

其中,$f(x)$ 和 $h(x)$ 非线性,通过一阶泰勒展开可被线性化为

Kalman Filter Algorithm

State Prediction:

Measurement Update:

EKF Fusion Process

Initialization

  • system state vector dimension: $n = 4$
  • timestep: $t_0$
  • system state vector: $x_0 \in \mathbb{R}^{4 \times 1}$
  • process covariance matrix: $P_0$
  • system state transition matrix: $F0 = I{4 \times 4}$
  • process noise covariance matrix: $Q0 = 0{4 \times 4}$

Prediction

当前时间戳与上一测量数据时间戳的偏移(timeoffset)

状态转移方程

2D常加速度运动模型

写成矩阵形式

抽象简写为

其中

State Transition Matrix

Process Noise Covariance Matrix

由上式

根据 $v \sim N(0, Q)$

因为 $G$ 不包含随机变量,将其移出

$a_x$ 和 $a_y$ 假设不相关,则

最终

Measurement Update

测量方程

Lidar Measurements

Lidar测量方程

简写为

上式中的状态转移矩阵H,也即 Measurement Jacobian Matrix

Lidar Measurement Noise Covariance Matrix

Radar Measurements

Radar测量方程

  • range $\rho$: the radial distance from the origin to our pedestrian
  • bearing $\varphi$: the angle between the ray and x direction
  • range rate $\dot{\rho}$: known as Doppler or radial velocity is the velocity along this ray

Measurement Jacobian Matrix

Radar Measurement Noise Covariance Matrix

R 表示了测量值的不确定度,一般由传感器的厂家提供

Reference

  • Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters

Multi-Sensor Fusion: LiDAR and Radar fusion based on EKF
https://cgabc.xyz/posts/5203333f/
Author
Gavin Gao
Posted on
August 28, 2019
Licensed under