Multi-Sensor Fusion: LiDAR and Radar fusion based on EKF
Last updated on November 26, 2023 pm
[TOC]
Overview
System State Vector
State Transition & Measurement Function
State transition function:
Measurement function:
其中,$f(x)$ 和 $h(x)$ 非线性,通过一阶泰勒展开可被线性化为
Kalman Filter Algorithm
State Prediction:
Measurement Update:
EKF Fusion Process
Initialization
- system state vector dimension: $n = 4$
- timestep: $t_0$
- system state vector: $x_0 \in \mathbb{R}^{4 \times 1}$
- process covariance matrix: $P_0$
- system state transition matrix: $F0 = I{4 \times 4}$
- process noise covariance matrix: $Q0 = 0{4 \times 4}$
Prediction
当前时间戳与上一测量数据时间戳的偏移(timeoffset)
状态转移方程
2D常加速度运动模型 为
写成矩阵形式
抽象简写为
其中
State Transition Matrix
Process Noise Covariance Matrix
由上式
根据 $v \sim N(0, Q)$
因为 $G$ 不包含随机变量,将其移出
$a_x$ 和 $a_y$ 假设不相关,则
最终
Measurement Update
测量方程
Lidar Measurements
Lidar测量方程
简写为
上式中的状态转移矩阵H,也即 Measurement Jacobian Matrix
Lidar Measurement Noise Covariance Matrix
Radar Measurements
Radar测量方程
- range $\rho$: the radial distance from the origin to our pedestrian
- bearing $\varphi$: the angle between the ray and x direction
- range rate $\dot{\rho}$: known as Doppler or radial velocity is the velocity along this ray
Measurement Jacobian Matrix
Radar Measurement Noise Covariance Matrix
R 表示了测量值的不确定度,一般由传感器的厂家提供
Reference
- Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters
Multi-Sensor Fusion: LiDAR and Radar fusion based on EKF
https://cgabc.xyz/posts/5203333f/