镜像变换
Last updated on May 7, 2023 pm
2D
对于2D空间的某个条直线做镜像,假设该直线的 单位法向量 u(x,y),由 \(Q=I-2 u u^{T}\) 计算得到2D空间的镜像矩阵
\[ \left[ \begin{array}{cc} 1-2 n_{x}{ }^{2} & -2 n_{x} n_{y} \\ -2 n_{x} n_{y} & 1-2 n_{y}{ }^{2} \end{array} \right] \]
3D
针对3D空间任意一平面进行镜像变换,n为镜像平面的法向量
\[ \left[ \begin{array}{ccc} 1-2 n_{x}{ }^{2} & -2 n_{x} n_{y} & -2 n_{x} n_{z} \\ -2 n_{x} n_{y} & 1-2 n_{y}{ }^{2} & -2 n_{y} n_{z} \\ -2 n_{x} n_{z} & -2 n_{y} n_{z} & 1-2 n_{z}{ }^{2} \end{array} \right] \]
例如,[10 20 30] 以z轴(0,0,1)为镜子(xy平面为镜像平面)进行镜像变换得到[10 20 -30]
镜像变换
https://cgabc.xyz/posts/1824fa08/