EKF v.s. MSCKF v.s. MAP (VINS-Mono)

Last updated on November 26, 2023 pm

[TOC]

Overview

EKF

true state

norminal state

true state linearization

prediction error & measurement residual

jacobian

covariance

Prediction

state prediction (w/o noise)

(error state) covariance

Update

Kalman gain

state update

covariance update

MSCKF

Prediction

state prediction (state prior)

propagate error cov P

continuous-time to discret-time,离散时间 状态转移矩阵和噪声协方差矩阵 比较准确,例如

误差状态的概率分布

误差协方差传播(整个系统过程)

Update (ESKF)

predicted residual (innovation)

then, the covariance of innovation

update state and covariance

MAP (VINS-Mono)

Prediction

state prediction (state prior)

pre-integration (propagate error cov P & state)

continuous-time to discret-time

误差状态的概率分布

误差状态(状态预积分)和协方差传播(图像k时刻初始,图像k~图像k+1)

Update (MAP)

Jacobian & information matrix in MAP

IMU

协方差矩阵(信息矩阵的逆)

Cam

协方差矩阵(信息矩阵的逆)

update state

QA

Jacobi when Linear and Nonlinear

欧式空间的非线性方程

当 $h(x)$ 线性时

Jacobi w.r.t Error or True State

当x在欧式空间时,上式等价。

Jacobi in EKF & MAP

优化变量 是 什么状态,对应的 雅克比 即是 对什么状态 求导

EKF

w.r.t true state w.r.t error state
measurement function $h(x)$ $h(\Delta x)$
Jacobi $\frac{\partial h(x)}{\partial x}$ $\frac{\partial h(x)}{\partial \Delta x}$
init state $x = x_0$ ${\Delta x}=0$
update $x \oplus \Delta x, \Delta x = Kr$ $\Delta x = Kr$

MAP

w.r.t true-state w.r.t error-state
cost function $f(x)$ $f(\Delta x)$
Jacobi $\frac{\partial f(x)}{\partial x}$ $\frac{\partial f(x)}{\partial \Delta x}$
init state $x = x_0$ ${\Delta x}=0$
iteration update $x \oplus \delta x$ $\Delta x \oplus \delta \Delta x$

EKF v.s. MSCKF v.s. MAP (VINS-Mono)
https://cgabc.xyz/posts/dd7458d3/
Author
Gavin Gao
Posted on
March 8, 2022
Licensed under