EKF v.s. MSCKF v.s. MAP (VINS-Mono)
Last updated on November 26, 2023 pm
[TOC]
Overview
EKF
true state
norminal state
true state linearization
prediction error & measurement residual
jacobian
covariance
Prediction
state prediction (w/o noise)
(error state) covariance
Update
Kalman gain
state update
covariance update
MSCKF
Prediction
state prediction (state prior)
propagate error cov P
continuous-time to discret-time,离散时间 状态转移矩阵和噪声协方差矩阵 比较准确,例如
误差状态的概率分布
误差协方差传播(整个系统过程)
Update (ESKF)
predicted residual (innovation)
then, the covariance of innovation
update state and covariance
MAP (VINS-Mono)
Prediction
state prediction (state prior)
pre-integration (propagate error cov P & state)
continuous-time to discret-time
误差状态的概率分布
误差状态(状态预积分)和协方差传播(图像k时刻初始,图像k~图像k+1)
Update (MAP)
Jacobian & information matrix in MAP
IMU
协方差矩阵(信息矩阵的逆)
Cam
协方差矩阵(信息矩阵的逆)
update state
QA
Jacobi when Linear and Nonlinear
欧式空间的非线性方程
当 $h(x)$ 线性时
Jacobi w.r.t Error or True State
当x在欧式空间时,上式等价。
Jacobi in EKF & MAP
优化变量 是 什么状态,对应的 雅克比 即是 对什么状态 求导
EKF
w.r.t true state | w.r.t error state | |
---|---|---|
measurement function | $h(x)$ | $h(\Delta x)$ |
Jacobi | $\frac{\partial h(x)}{\partial x}$ | $\frac{\partial h(x)}{\partial \Delta x}$ |
init state | $x = x_0$ | ${\Delta x}=0$ |
update | $x \oplus \Delta x, \Delta x = Kr$ | $\Delta x = Kr$ |
MAP
w.r.t true-state | w.r.t error-state | |
---|---|---|
cost function | $f(x)$ | $f(\Delta x)$ |
Jacobi | $\frac{\partial f(x)}{\partial x}$ | $\frac{\partial f(x)}{\partial \Delta x}$ |
init state | $x = x_0$ | ${\Delta x}=0$ |
iteration update | $x \oplus \delta x$ | $\Delta x \oplus \delta \Delta x$ |
EKF v.s. MSCKF v.s. MAP (VINS-Mono)
https://cgabc.xyz/posts/dd7458d3/