图像分析之高斯滤波

Last updated on May 7, 2023 pm

[TOC]

高斯函数

一维高斯函数

\[ f(x) = A \cdot e^{-\frac{(x-\mu)^2}{2{\sigma}^2}} \]

多维高斯函数

\[ f_{X}\left(x_{1}, x_{2}, \cdots, x_{k}\right) = A \cdot \exp \left(-\frac{1}{2}(X-\mu)^{T} \Sigma^{-1}(X-\mu)\right) \]

一维正态分布 高斯概率密度函数

\[ f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2{\sigma}^2}} \]

多元正态分布 高斯概率密度函数

\[ f_{X}\left(x_{1}, x_{2}, \cdots, x_{k}\right) = \frac{1}{\sqrt{(2 \pi)^{k}|\Sigma|}} \cdot \exp \left(-\frac{1}{2}(X-\mu)^{T} \Sigma^{-1}(X-\mu)\right) \]

图像高斯滤波(模糊、平滑)

图像大多数噪声均属于高斯噪声,因此高斯滤波器应用也较广泛。高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像去噪。

在图像处理中,高斯滤波一般有两种实现方式,一是 用离散化窗口滑窗卷积,另一种通过 傅里叶变换。最常见的就是第一种滑窗实现,只有当离散化的窗口非常大,用滑窗计算量非常大(即使用可分离滤波器的实现)的情况下,可能会考虑基于傅里叶变化的实现方法。

二维高斯核模板或卷积核(假设x与y方向方差一致):

\[ f(x,y) = \frac{1}{2\pi{\sigma}^2} \cdot \exp \left( -\frac{(x-\frac{m}{2})^2 + (y-\frac{n}{2})^2}{2{\sigma}^2} \right) \quad s.t. \quad x \in [0, m), \quad y \in [0, n) \]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
double *generate_gaussian_template(unsigned int m, double sigma = 0.84089642) {
unsigned int n = m;
double *gaussian_template = new double[m * n];
double sum = 0.0;
for (int y = 0; y < m; y++) {
for (int x = 0; x < n; x++) {
double r2 = std::pow((double) x - m / 2, 2) + std::pow((double) y - n / 2, 2);
double sigma2Inv = 1.f / (2 * std::pow(sigma, 2));
double exp = std::exp(-r2 * sigma2Inv);
sum += *(gaussian_template + y * m + x) = sigma2Inv / M_PI * exp;
}
}
double sumInv = 0.0;
if (sum > 1e-6)
sumInv = 1.0 / sum;
for (int y = 0; y < m; y++)
for (int x = 0; x < n; x++)
*(gaussian_template + y * m + x) *= sumInv;
return gaussian_template;
}

二维高斯核模板或卷积核(以模板中心为原点):

\[ G(u, v) = \frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}, \quad s.t. \quad u \in [-w, w], \quad v \in [-w, w] \]

归一化:

\[ G_n(u, v) = \frac{1}{s} \cdot e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}, \quad s = \sum_{u=-w}^{w} \sum_{v=-w}^{w} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}} \]

图像高斯滤波:

\[ \quad I^{\prime}(i,j) = \sum_{u=-w}^{w} \sum_{v=-w}^{w} I(i+u, j+v) G_n(u,v) \]

高斯滤波的可分离性

\[ s = \sum_{u=-w}^{w} \sum_{v=-w}^{w} \cdot g(u) \cdot g(v) = \left(\sum_{u=-w}^{w} \cdot g(u) \right) \cdot \left(\sum_{v=-w}^{w} \cdot g(v) \right) = s^\prime \cdot s^\prime \]

\[ G_n(u, v) = \frac{1}{s} \cdot e^{-\frac{u^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{v^{2}}{2 \sigma^{2}}} = \frac{1}{s} \cdot g(u) \cdot g(v) = \frac{g(u)}{s^\prime} \cdot \frac{g(v)}{s^\prime} \]

核矩阵:

\[ \begin{aligned} \mathbf{G}_{(2w+1)\times(2w+1)} &= \frac{1}{s}\left[\begin{array}{ccccc} g(-w) g(-w) & \dots & g(-w) g(0) & \dots & g(-w) g(w) \\ \vdots & & \vdots & & \vdots \\ g(0) g(-w) & \dots & g(0) g(0) & \dots & g(0) g(w) \\ \vdots & & \vdots & & \vdots \\ g(w) g(-w) & \dots & g(w) g(0) & \dots & g(w) g(w) \end{array}\right] \\ &= \frac{1}{s^\prime} \left[\begin{array}{c} g(-w) \\ \vdots \\ g(0) \\ \vdots \\ g(w) \end{array}\right] \cdot \frac{1}{s^\prime} \left[\begin{array}{ccccc} g(-w) & \ldots & g(0) & \ldots & g(w) \end{array}\right] \end{aligned} \]

图像高斯滤波:

\[ \begin{aligned} I^{\prime}(i, j) &=\sum_{u=-w}^{w} \sum_{v=-w}^{w} I(i+u, j+v) G_n(u, v) \\ &=\sum_{u=-w}^{w} \sum_{v=-w}^{w} I(i+u, j+v) \frac{1}{s} g(u) g(v) \\ &=\sum_{u=-w}^{w} \sum_{v=-w}^{w} I(i+u, j+v) \frac{1}{s^{\prime}} g(u) \frac{1}{s^{\prime}} g(v) \\ &=\sum_{u=-w}^{w} \left[ {\color{blue} \sum_{v=-w}^{w} I(i+u, j+v) \frac{g(v)}{s^{\prime}} } \right] \frac{g(u)}{s^{\prime}} \\ &=\sum_{u=-w}^{w} {\color{blue} S(i+u) } \frac{g(u)}{s^{\prime}} \end{aligned} \]


图像分析之高斯滤波
https://cgabc.xyz/posts/db23170c/
Author
Gavin Gao
Posted on
July 12, 2020
Licensed under